您目前的位置: 首页» 科学研究» 科研进展

JMPS报道北理工方岱宁院士、陈浩森、曾庆磊团队在动态失效固体力学方向研究进展

近日,固体力学期刊Journal of the Mechanics and Physics of Solids(JMPS)以“A rate-dependent phase-field model for dynamic shear band formation in strength-like and toughness-like modes”为题报道了北理工方岱宁院士、陈浩森、曾庆磊团队在固体动态失效领域的最新进展。

相场法在模拟裂纹扩展问题中已经得到了广泛应用,近年来大家比较关注相场法能否准确模拟裂纹萌生过程。动态剪切带(或者绝热剪切带)是金属和合金材料在冲击载荷下的重要失效模式,它们的萌生过程在文献中一般被假设为两类问题:类强度和类韧性,如图1所示。本文将这两类问题进一步分为类强度、大范围屈服和小范围屈服三种模式,在热力学一致框架下提出了基于能量准则的率相关相场模型,可以准确模拟各种动态失效模式的萌生和演化过程。文章首先研究了力热耦合失效问题中相场法特征长度的物理意义,结果表明率效应或者温度效应显著时特征长度的选择会影响能量耗散过程,这一点与静态问题相场模型明显不同。接着对不同模式的剪切带形成过程进行了仿真,基于能量准则的相场法可以很好地再现剪切带萌生的应变准则或者应力准则,如图2所示,并且不同失效模式的产生可以由剪切过程区的大小判定。最后,通过对文献中不同几何试样、不同材料和加载方式的动态剪切试验的模拟对比(图3),证明了在统一的相场法框架下模拟各种动态剪切失效模式的可行性。

image.png

图1. 动态剪切带的类强度和类韧性模型

image.png

图2. 相场法模拟的临界剪切应变和应力与理论解的对比(LSY:大范围屈服;SSY:小范围屈服)

image.png

图3. 相场法模拟结果与Kalthoff冲击实验文献结果对比

Q. Zeng, T. Wang, S. Zhu, H.-S. Chen, D. Fang. A rate-dependent phase-field model for dynamic shear band formation in strength-like and toughness-like modes. J. Mech. Phys. Solids, 2022, 164, 104914. DOI: 10.1016/j.jmps.2022.104914

https://www.sciencedirect.com/science/article/pii/S0022509622001156

2014以来,动态失效固体力学小组(DFM)经过近三年攻关,自主研制国内首台线阵式高速红外测温仪器,并于19年开始攻关面阵式高速测温仪器。目前已搭建了世界领先的动态加载/高速光学(7M)/高速红外(面阵初步)同步实验平台,深入开展动态失效固体力热耦合失效行为研究,在PRL(2019)、JMPS(2019,2020,2022)、MM(2019)等发表了系列工作。该工作得到了国家自然科学基金(11922202, 12002050,11802029)的支持。欢迎硕博士同学、博士后的加入,欢迎理论、仿真和材料研究团队的深入合作。

近期系列工作:

[1] Yazhou Guo, Qichao Ruan, Shengxin Zhu, Q. Wei, Haosen Chen, Jianan Lu, Bo Hu, Xihui Wu, Yulong Li, and Daining Fang. "Temperature rise associated with adiabatic shear band: causality clarified." Physical Review Letters 122, 1 (2019): 015503.

[2] Yazhou Guo, Qichao Ruan, Shengxin Zhu, Q. Wei, Jianan Lu, Bo Hu, Xihui Wu, and Yulong Li. "Dynamic failure of titanium: Temperature rise and adiabatic shear band formation." Journal of the Mechanics and Physics of Solids 135 (2020): 103811.

[3] Qinglei Zeng, Tao Wang, Shengxin Zhu, Haosen Chen, and Daining Fang. "A rate-dependent phase-field model for dynamic shear band formation in strength-like and toughness-like modes." Journal of the Mechanics and Physics of Solids (2022): 104914.

[4] Qinglei Zeng, Andrew L. Tonge, and K. T. Ramesh. "A multi-mechanism constitutive model for the dynamic failure of quasi-brittle materials. Part I: Amorphization as a failure mode." Journal of the Mechanics and Physics of Solids 130 (2019): 370-392.

[5] Qinglei Zeng, Andrew L. Tonge, and K. T. Ramesh. "A multi-mechanism constitutive model for the dynamic failure of quasi-brittle materials. Part II: Integrative model." Journal of the Mechanics and Physics of Solids 131 (2019): 20-42.

[6] Shengxin Zhu, Yazhou Guo, Haosen Chen, Yulong Li, and Daining Fang. "Formation of adiabatic shear band within Ti–6Al–4V: Effects of stress state." Mechanics of Materials 137 (2019): 103102.

[7] Shengxin Zhu, Yazhou Guo, Qichao Ruan, Haosen Chen, Yulong Li, and Daining Fang. "Formation of adiabatic shear band within Ti-6Al-4V: An in-situ study with high-speed photography and temperature measurement." International Journal of Mechanical Sciences 171 (2020): 105401.


Baidu
sogou